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EXISTENCE OF ALMOST AUTOMORPHIC SOLUTIONS TO

SOME CLASSES OF NONAUTONOMOUS HIGHER-ORDER

DIFFERENTIAL EQUATIONS

TOKA DIAGANA

Abstract. In this paper, we obtain the existence of almost automorphic so-
lutions to some classes of nonautonomous higher order abstract differential
equations with Stepanov almost automorphic forcing terms. A few illustrative
examples are discussed at the very end of the paper.

1. Introduction

The main motivation of this paper comes from the work of Andres, Bersani, and
Radová [8], in which the existence (and uniqueness) of almost periodic solutions
was established for the class of n-order autonomous differential equations

u(n)(t) +
n∑

k=1

aku
(n−k)(t) = f(u) + p(t), t ∈ R,(1.1)

where f, p : R 7→ R are (Stepanov) almost periodic, f is Lipschitz, and ak ∈ R

for k = 1, ..., n are given real constants such that the real part of each root of the
characteristic polynomial associated with the (linear) differential operator on the
left-hand side of Eq. (1.1), that is,

Q(λ) := λn +

n∑

k=1

akλ
n−k

is at least nonzero.
The method utilized in [8] makes extensive use of a very complicated representa-

tion formula for solutions to Eq. (1.1). For details on that representation formula,
we refer the reader to [9] and [10] and the references therein.

Let H be a Hilbert space. In this paper, we study a more general equation than
Eq. (1.1). Namely, using similar techniques as in [14, 27], we study and obtain
some reasonable sufficient conditions, which do guarantee the existence of almost
automorphic solutions to the class of nonautonomous n-order differential equations

u(n)(t) +
n−1∑

k=1

ak(t)u(k)(t) + a0(t)Au(t) = f(t, u), t ∈ R,(1.2)

where A : D(A) ⊂ H 7→ H is a (possibly unbounded) self-adjoint linear operator on
H whose spectrum consists of isolated eigenvalues

0 < λ1 < λ2 < ... < λl → ∞ as l → ∞
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with each eigenvalue having a finite multiplicity γj equals to the multiplicity of the
corresponding eigenspace, the functions ak : R 7→ R (k = 0, 1, ..., n− 1) are almost
automorphic with

inf
t∈R

∣∣∣a0(t)
∣∣∣ = γ0 > 0,

and the function f : R×H 7→ H is Stepanov almost automorphic in the first variable
uniformly in the second variable.

Consider the time-dependent polynomial defined by

Ql
t(ρ) := ρn +

n−1∑

k=1

ak(t)ρk + λla0(t)

and denote its roots by

ρl
k(t) = µl

k(t) + iνl
k(t), k = 1, 2, ..., n, l ≥ 1, and t ∈ R.

In the rest of this paper, we suppose that there exists δ0 > 0 such that

sup
l≥1,t∈R

[
max

(
µl

1(t), µ
l
2(t), ..., µ

l
n(t)

)]
≤ −δ0 < 0.(1.3)

To deal with Eq. (1.2), the main idea consists of rewriting it as a nonautonomous
first-order differential equation on Xn = H × H × H....× H (n-times) involving the
family of n× n-operator matrices {A(t)}t∈R.

Indeed, assuming that u is differentiable n times and setting

z :=




u

u′

u′′

u(3)

.

u(n−1)




,

then Eq. (1.2) can be rewritten in the Hilbert space Xn in the following form

(1.4) z′(t) = A(t)z(t) + F (t, z(t)), t ∈ R,

where A(t) is the family of n× n-operator matrices defined by

(1.5) A(t) =




0 IH 0 0 .... 0

0 0 IH .... 0

. . . IH . . .

. . . . . . .

−a0(t)A −a1(t)IH . . . . −an−1(t)IH




whose domains D(A(t)) are constant in t ∈ R and are precisely given by

D = D(A) × H × H...× H := D(A) × X
n−1
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for all t ∈ R.
Moreover, the semilinear term F appearing in Eq. (1.4) is defined on R×Xn

α for
some α ∈ (0, 1) by

F (t, z) :=




0

0

0

0
.

.

f(t, u)




,

where Xn
α is the real interpolation space between Xn and D(A(t)) given by Xn

α =
Hα × X

n−1, with

Hα := (H, D(A))α,∞.

Under some reasonable assumptions, it will be shown that the linear operator
matrices A(t) satisfy the well-known Acquistapace-Terreni conditions [3], which do
guarantee the existence of an evolution family U(t, s) associated with it. Moreover,
it will be shown that U(t, s) is exponentially stable under those assumptions.

The existence of almost automorphic solutions to higher-order differential equa-
tions is important due to their (possible) applications. For instance when n = 2,
we have thermoelastic plate equations [14, 27] or telegraph equation [31] or Sine-
Gordon equations [26]. Let us also mention that when n = 2, some contributions
on the maximal regularity, bounded, almost periodic, asymptotically almost peri-
odic solutions to abstract second-order differential and partial differential equations
have recently been made, among them are [11], [12], [44], [45], [46], and [47]. In
[8], the existence of almost periodic solutions to higher-order differential equations
with constant coefficients in the form Eq. (1.1) was obtained in particular in the
case when the forcing term is almost periodic. However, to the best of our knowl-
edge, the existence of almost automorphic solutions to higher-order nonautonomous
equations in the form Eq. (1.2) in the case when the forcing term is Stepanov almost
automorphic is an untreated original question, which in fact constitutes the main
motivation of the present paper.

The paper is organized as follows: Section 2 is devoted to preliminaries facts
needed in the sequel. In particular, facts related to the existence of evolution
families as well as preliminary results on intermediate spaces will be stated there.
In addition, basic definitions and classical results on (Stepanov) almost automorphic
functions are also given. In Sections 3 and 4, we prove the main result. In Section
5, we provide the reader with an example to illustrate our main result.

2. Preliminaries

Let H be a Hilbert space equipped with the norm ‖·‖ and the inner product 〈·, ·〉.
In this paper, A : D(A) ⊂ H 7→ H stands for a self-adjoint (possibly unbounded)
linear operator on H whose spectrum consists of isolated eigenvalues

0 < λ1 < λ2 < ... < λl → ∞ as l → ∞
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with each eigenvalue having a finite multiplicity γj equals to the multiplicity of the
corresponding eigenspace.

Let {ek
j } be a (complete) orthonormal sequence of eigenvectors associated with

the eigenvalues {λj}j≥1.

Clearly, for each u ∈ D(A) :=

{
u ∈ H :

∞∑

j=1

λ2
j

∥∥∥Eju
∥∥∥

2

<∞

}
, we have

Au =

∞∑

j=1

λj

γj∑

k=1

〈u, ek
j 〉e

k
j =

∞∑

j=1

λjEju

where Eju =

γj∑

k=1

〈u, ek
j 〉e

k
j .

Note that {Ej}j≥1 is a sequence of orthogonal projections on H. Moreover, each
u ∈ H can written as follows:

u =
∞∑

j=1

Eju.

It should also be mentioned that the operator −A is the infinitesimal generator of
an analytic semigroup {T (t)}t≥0, which is explicitly expressed in terms of those
orthogonal projections Ej by, for all u ∈ H,

T (t)u =

∞∑

j=1

e−λjtEju.

In addition, the fractional powers Ar (r ≥ 0) of A exist and are given by

D(Ar) =

{
u ∈ H :

∞∑

j=1

λ2r
j

∥∥∥Eju
∥∥∥

2

<∞

}

and

Aru =
∞∑

j=1

λ2r
j Eju, ∀u ∈ D(Ar).

Let (X,
∥∥∥ ·
∥∥∥) be a Banach space. If L is a linear operator on the Banach space

X, then:

• D(L) stands for its domain;
• ρ(L) stands for its resolvent;
• σ(L) stands for its spectrum;
• N(L) stands for its null-space or kernel; and
• R(L) stands for its range.

If L : D = D(L) ⊂ X 7→ X is a closed linear operator, one denotes its graph norm

by
∥∥∥ ·
∥∥∥

D
. Clearly, (D,

∥∥∥ ·
∥∥∥

D
) is a Banach space. Moreover, one sets

R(λ, L) := (λI − L)−1

for all λ ∈ ρ(A).
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We set Q = I − P for a projection P . If Y,Z are Banach spaces, then the
space B(Y,Z) denotes the collection of all bounded linear operators from Y into Z

equipped with its natural topology. This is simply denoted by B(Y) when Y = Z.

2.1. Evolution Families. Hypothesis (H.1). The family of closed linear opera-
tors A(t) for t ∈ R on X with domain D(A(t)) (possibly not densely defined) satisfy
the so-called Acquistapace-Terreni conditions, that is, there exist constants ω ∈ R,

θ ∈
(

π
2 , π

)
, K,L ≥ 0 and µ, ν ∈ (0, 1] with µ+ ν > 1 such that

(2.1) Sθ ∪
{
0
}
⊂ ρ
(
A(t) − ω

)
∋ λ,

∥∥∥R
(
λ,A(t) − ω

)∥∥∥ ≤
K

1 +
∣∣∣λ
∣∣∣

and

(2.2)
∥∥∥
(
A(t) −ω

)
R
(
λ,A(t)− ω

) [
R
(
ω,A(t)

)
−R

(
ω,A(s)

)]∥∥∥ ≤ L
∣∣∣t− s

∣∣µ
∣∣∣λ
∣∣∣
−ν

for t, s ∈ R, λ ∈ Sθ :=

{
λ ∈ C \ {0} :

∣∣∣ argλ
∣∣∣ ≤ θ

}
.

Note that in the particular case when A(t) has a constant domain D = D(A(t)),
it is well-known [6, 38] that Eq. (2.2) can be replaced with the following: There
exist constants L and 0 < µ ≤ 1 such that

(2.3)
∥∥∥
(
A(t) −A(s)

)
R
(
ω,A(r)

)∥∥∥ ≤ L
∣∣∣t− s

∣∣∣
µ

, s, t, r ∈ R.

It should mentioned that (H.1) was introduced in the literature by Acquistapace
and Terreni in [2, 3] for ω = 0. Among other things, it ensures that there exists a
unique evolution family U = U(t, s) on X associated with A(t) satisfying

(a) U(t, s)U(s, r) = U(t, r);
(b) U(t, t) = I for t ≥ s ≥ r in R;
(c) (t, s) 7→ U(t, s) ∈ B(X) is continuous for t > s;

(d) U(·, s) ∈ C1((s,∞), B(X)),
∂U

∂t
(t, s) = A(t)U(t, s) and

∥∥∥A(t)kU(t, s)
∥∥∥ ≤ K (t− s)−k

for 0 < t− s ≤ 1, k = 0, 1, 0 ≤ α < µ, x ∈ D((ω −A(s))α), and a constant
C depending only on the constants appearing in (H.1); and

(e) ∂+
s U(t, s)x = −U(t, s)A(s)x for t > s and x ∈ D(A(s)) with A(s)x ∈

D(A(s)).

It should also be mentioned that the above-mentioned proprieties were mainly
established in [1, Theorem 2.3] and [49, Theorem 2.1], see also [3, 48]. In that case
we say that A(·) generates the evolution family U(·, ·).

One says that an evolution family U has an exponential dichotomy (or is hyper-
bolic) if there are projections P (t) (t ∈ R) that are uniformly bounded and strongly
continuous in t and constants δ > 0 and N ≥ 1 such that

(f) U(t, s)P (s) = P (t)U(t, s);
(g) the restriction UQ(t, s) : Q(s)X → Q(t)X of U(t, s) is invertible (we then

set ŨQ(s, t) := UQ(t, s)−1); and
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(h)
∥∥∥U(t, s)P (s)

∥∥∥ ≤ Ne−δ(t−s) and
∥∥∥ŨQ(s, t)Q(t)

∥∥∥ ≤ Ne−δ(t−s) for t ≥ s and

t, s ∈ R.

According to [40], the following sufficient conditions are required for A(t) to have
exponential dichotomy.

(i) Let (A(t), D(t))t∈R be generators of analytic semigroups on X of the same
type. Suppose that D(A(t)) ≡ D(A(0)), A(t) is invertible,

sup
t,s∈R

∥∥∥A(t)A(s)−1
∥∥∥

is finite, and ∥∥∥A(t)A(s)−1 − I
∥∥∥ ≤ L0

∣∣∣t− s
∣∣∣
µ

for t, s ∈ R and constants L0 ≥ 0 and 0 < µ ≤ 1.
(j) The semigroups (eτA(t))τ≥0, t ∈ R, are hyperbolic with projection Pt and

constants N, δ > 0. Moreover, let
∥∥∥A(t)eτA(t)Pt

∥∥∥ ≤ ψ(τ)

and ∥∥∥A(t)eτAQ(t)Qt

∥∥∥ ≤ ψ(−τ)

for τ > 0 and a function ψ such that R ∋ s 7→ ϕ(s) :=
∣∣∣s
∣∣∣
µ

ψ(s) is integrable

with L0

∥∥∥ϕ
∥∥∥

L1(R)
< 1.

This setting requires some estimates related to U(t, s). For that, we introduce
the interpolation spaces for A(t). We refer the reader to the following excellent
books [6], [23], and [29] for proofs and further information on theses interpolation
spaces.

Let A be a sectorial operator on X (for that, in assumption (H.1), replace A(t)
with A) and let α ∈ (0, 1). Define the real interpolation space

X
A
α :=

{
x ∈ X :

∥∥∥x
∥∥∥

A

α
:= supr>0

∥∥∥rα
(
A− ω

)
R
(
r, A− ω

)
x
∥∥∥ <∞

}
,

which, by the way, is a Banach space when endowed with the norm
∥∥∥ ·
∥∥∥

A

α
. For

convenience we further write

X
A
0 := X,

∥∥∥x
∥∥∥

A

0
:=
∥∥∥x
∥∥∥, X

A
1 := D(A)

and ∥∥∥x
∥∥∥

A

1
:=
∥∥∥(ω −A)x

∥∥∥.

Moreover, let X̂
A := D(A) of X. In particular, we have the following continuous

embedding

D(A) →֒ X
A
β →֒ D((ω −A)α) →֒ X

A
α →֒ X̂

A →֒ X,(2.4)

for all 0 < α < β < 1, where the fractional powers are defined in the usual way.
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In general, D(A) is not dense in the spaces XA
α and X. However, we have the

following continuous injection

(2.5) X
A
β →֒ D(A)

‖·‖A
α

for 0 < α < β < 1.
Given the family of linear operators A(t) for t ∈ R, satisfying (H.1), we set

X
t
α := X

A(t)
α , X̂

t := X̂
A(t)

for 0 ≤ α ≤ 1 and t ∈ R, with the corresponding norms. Then the embedding in
Eq. (2.4) holds with constants independent of t ∈ R. These interpolation spaces
are of class Jα ([29, Definition 1.1.1 ]) and hence there is a constant c(α) such that

(2.6)
∥∥∥y
∥∥∥

t

α
≤ c(α)

∥∥∥y
∥∥∥

1−α∥∥∥A(t)y
∥∥∥

α

, y ∈ D(A(t)).

We have the following fundamental estimates for the evolution family U .

Proposition 2.1. [14] For x ∈ X, 0 ≤ α ≤ 1 and t > s, the following hold:

(i) There is a constant c(α), such that

(2.7)
∥∥∥U(t, s)P (s)x

∥∥∥
t

α
≤ c(α)e−

δ
2
(t−s)(t− s)−α

∥∥∥x
∥∥∥.

(ii) There is a constant m(α), such that

(2.8)
∥∥∥ŨQ(s, t)Q(t)x

∥∥∥
s

α
≤ m(α)e−δ(t−s)

∥∥∥x
∥∥∥.

In addition to above, we also need the following assumptions:

Hypothesis (H.2). The evolution family U generated by A(·) has an exponential
dichotomy with constants N, δ > 0 and dichotomy projections P (t) for t ∈ R.

Hypothesis (H.3). There exist α, β with 0 ≤ α < β < 1 and such that

X
t
α = Xα and X

t
β = Xβ

for all t ∈ R, with uniform equivalent norms.

2.2. Stepanov Almost Automorphic Functions. Let (X, ‖ · ‖), (Y, ‖ · ‖Y) be
two Banach spaces. Let BC(R,X) (respectively, BC(R × Y,X)) denote the collec-
tion of all X-valued bounded continuous functions (respectively, the class of jointly
bounded continuous functions F : R × Y 7→ X). The space BC(R,X) equipped
with the sup norm ‖ · ‖∞ is a Banach space. Furthermore, C(R,Y) (respectively,
C(R×Y,X)) denotes the class of continuous functions from R into Y (respectively,
the class of jointly continuous functions F : R × Y 7→ X).

Definition 2.2. [37] The Bochner transform f b(t, s), t ∈ R, s ∈ [0, 1] of a function
f : R 7→ X is defined by f b(t, s) := f(t+ s).

Remark 2.3. (i) A function ϕ(t, s), t ∈ R, s ∈ [0, 1], is the Bochner transform of a
certain function f , ϕ(t, s) = f b(t, s) , if and only if ϕ(t + τ, s − τ) = ϕ(s, t) for all
t ∈ R, s ∈ [0, 1] and τ ∈ [s− 1, s].

(ii) Note that if f = h+ ϕ, then f b = hb + ϕb. Moreover, (λf)b = λf b for each
scalar λ.
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Definition 2.4. The Bochner transform F b(t, s, u), t ∈ R, s ∈ [0, 1], u ∈ X of a
function F (t, u) on R × X, with values in X, is defined by

F b(t, s, u) := F (t+ s, u)

for each u ∈ X.

Definition 2.5. Let p ∈ [1,∞). The space BSp(X) of all Stepanov bounded
functions, with the exponent p, consists of all measurable functions f : R 7→ X such
that f b belongs to L∞

(
R;Lp((0, 1),X)

)
. This is a Banach space with the norm

‖f‖Sp := ‖f b‖L∞(R,Lp) = sup
t∈R

(∫ t+1

t

‖f(τ)‖p dτ

)1/p

.

2.3. Sp-Almost Automorphy.

Definition 2.6. (Bochner) A function f ∈ C(R,X) is said to be almost auto-
morphic if for every sequence of real numbers (s′n)n∈N, there exists a subsequence
(sn)n∈N such that

g(t) := lim
n→∞

f(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

g(t− sn) = f(t)

for each t ∈ R.
The collection of all almost automorphic functions from R to X will be denoted

AA(X).

Similarly

Definition 2.7. (Bochner) A function F ∈ C(R×Y,X) is said to be almost auto-
morphic if for every sequence of real numbers (s′n)n∈N, there exists a subsequence
(sn)n∈N such that

G(t, u) := lim
n→∞

F (t+ sn, u)

is well defined for each t ∈ R, and

lim
n→∞

G(t− sn, u) = F (t, u)

for each t ∈ R uniformly in u ∈ Y.
The collection of all almost automorphic functions from R × Y to X will be

denoted AA(R × Y).

We have the following composition result:

Theorem 2.8. [34] Suppose F : R × Y 7→ X belongs to AA(R × Y) and that the
mapping x 7→ f(t, x) is Lipschitz in the sense that there exists L ≥ 0 such that

∥∥∥F (t, x) − F (t, y)
∥∥∥ ≤ L

∥∥∥x− y
∥∥∥

for all x, y ∈ Y uniformly in t ∈ R.
Then, then the function defined by G(t) = F (t, ϕ(t)) belongs to AA(X) provided

ϕ ∈ AA(Y).
EJQTDE, 2010 No. 22, p. 8



We also have the following composition result, which is a straightforward con-
sequence of the composition of pseudo almost automorphic functions obtained in
[43].

Theorem 2.9. [43] If F : R × Y 7→ X belongs to AA(R × Y) and if x 7→ F (t, x)
is uniformly continuous on any bounded subset K of Y for each t ∈ R, then the
function defined by h(t) = F (t, ϕ(t)) belongs to AA(X) provided ϕ ∈ AA(Y).

We will denote by AAu(X) the closed subspace of all functions f ∈ AA(X) with
g ∈ C(R,X). Equivalently, f ∈ AAu(X) if and only if f is almost automorphic
and the convergence in Definition 2.7 are uniform on compact intervals, i.e. in
the Fréchet space C(R,X). Indeed, if f is almost automorphic, then, its range is
relatively compact. Obviously, the following inclusions hold:

AP (X) ⊂ AAu(X) ⊂ AA(X) ⊂ BC(X),

where AP (X) is the Banach space of almost periodic functions from R to X.

Definition 2.10. [36] The space ASp(X) of Stepanov almost automorphic func-
tions (or Sp-almost automorphic) consists of all f ∈ BSp(X) such that f b ∈
AA
(
Lp(0, 1; X)

)
. That is, a function f ∈ L

p
loc(R; X) is said to be Sp-almost au-

tomorphic if its Bochner transform f b : R → Lp(0, 1; X) is almost automorphic in
the sense that for every sequence of real numbers (s′n)n∈N, there exists a subse-
quence (sn)n∈N and a function g ∈ L

p
loc(R; X) such that

[∫ t+1

t

‖f(sn + s) − g(s)‖pds

]1/p

→ 0, and

[∫ t+1

t

‖g(s− sn) − f(s)‖pds

]1/p

→ 0

as n→ ∞ pointwise on R.

Remark 2.11. It is clear that if 1 ≤ p < q < ∞ and f ∈ L
q
loc(R; X) is Sq-almost

automorphic, then f is Sp-almost automorphic. Also if f ∈ AA(X), then f is Sp-
almost automorphic for any 1 ≤ p < ∞. Moreover, it is clear that f ∈ AAu(X) if
and only if f b ∈ AA(L∞(0, 1; X)). Thus, AAu(X) can be considered as AS∞(X).

Definition 2.12. A function F : R × Y 7→ X, (t, u) 7→ F (t, u) with F (·, u) ∈
L

p
loc(R; X) for each u ∈ Y, is said to be Sp-almost automorphic in t ∈ R uniformly

in u ∈ Y if t 7→ F (t, u) is Sp-almost automorphic for each u ∈ Y, that is, for
every sequence of real numbers (s′n)n∈N, there exists a subsequence (sn)n∈N and a
function G(·, u) ∈ L

p
loc(R; X) such that

[∫ t+1

t

‖F (sn + s, u) −G(s, u)‖pds

]1/p

→ 0, and

[∫ t+1

t

‖G(s− sn, u) − F (s, u)‖pds

]1/p

→ 0

as n→ ∞ pointwise on R for each u ∈ Y.
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The collection of those Sp-almost automorphic functions F : R × Y 7→ X will be
denoted by ASp(R × Y).

We have the following straightforward composition theorems, which generalize
Theorem 2.8 and Theorem 2.9, respectively:

Theorem 2.13. Let F : R×Y 7→ X be a Sp-almost automorphic function. Suppose
that u 7→ F (t, u) is Lipschz in the sense that there exists L ≥ 0 such

∥∥∥F (t, u) − F (t, v)
∥∥∥ ≤ L

∥∥∥u− v
∥∥∥

Y

for all t ∈ R, (u, v) ∈ Y × Y.
If φ ∈ ASp(Y), then Γ : R → X defined by Γ(·) := F (·, φ(·)) belongs to ASp(X).

Theorem 2.14. Let F : R × Y 7→ X be a Sp-almost automorphic function, where.
Suppose that F (t, u) is uniformly continuous in every bounded subset K ⊂ X uni-
formly for t ∈ R. If g ∈ ASp(Y), then Γ : R → X defined by Γ(·) := F (·, g(·))
belongs to ASp(X).

3. Main results

Consider the nonautonomous differential equation

u′(t) = A(t)u(t) + F (t, u(t)), t ∈ R,(3.1)

where F : R × Xα 7→ X is Sp-almost automorphic.

Definition 3.1. A function u : R 7→ Xα is said to be a bounded solution to Eq.
(3.1) provided that

u(t) =

∫ t

−∞

U(t, s)P (s)F (s, u(s))ds−

∫ ∞

t

UQ(t, s)Q(s)F (s, u(s))ds.(3.2)

for all t ∈ R.

Throughout the rest of the paper, we set S1u(t) := S11u(t) − S12u(t), where

S11u(t) :=

∫ t

−∞

U(t, s)P (s)F (s, u(s))ds, S12u(t) :=

∫ ∞

t

UQ(t, s)Q(s)F (s, u(s))ds.

for all t ∈ R.
To study Eq. (3.1), in addition to the previous assumptions, we require that

p > 1,
1

p
+

1

q
= 1, and that the following assumptions hold:

(H.4) R(ω,A(·)) ∈ B(R, AA(Xα)).
(H.5) The function F : R×X 7→ Xβ is Sp-almost automorphic in t ∈ R uniformly

in u ∈ X. Moreover, F is Lipschitz in the following sense: there exists
L > 0 for which

∥∥∥F (t, u) − F (t, v)
∥∥∥

β
≤ L

∥∥∥u− v
∥∥∥

for all u, v ∈ X and t ∈ R.
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Lemma 3.2. Under assumptions (H.1)-(H.2)-(H.3)-(H.4)-(H.5) and if

N(α, q, δ) :=

∞∑

n=1

[∫ n

n−1

e−q δ
2
ss−qαds

]1/q

<∞,(3.3)

then the integral operator S1 defined above maps AA(Xα) into itself.

Proof. Let u ∈ AA(Xα). Setting ϕ(t) := F (t, u(t)) and using Theorem 2.13 it
follows that ϕ ∈ ASp(Xβ). The next step consists of showing that S1 ∈ AA(Xα).

Define for all n = 1, 2, ..., the sequence of integral operators

Φn(t) =

∫ n

n−1

U(t, t− s)P (t− s)ϕ(t− s)ds

for each t ∈ R.
Letting r = t− s it follows that

Φn(t) =

∫ t−n+1

t−n

U(t, r)P (r)ϕ(r)dr,

and hence from the Hölder’s inequality and the estimate Eq. (2.7) it follows that

∥∥∥Φn(t)
∥∥∥

α
≤

∫ t−n+1

t−n

c(α)e−
δ
2
(t−r)(t− r)−α

∥∥∥φ(r)
∥∥∥dr

≤ c

∫ t−n+1

t−n

c(α)e−
δ
2
(t−r)(t− r)−α

∥∥∥φ(r)
∥∥∥

α
dr

≤ cc′
∫ t−n+1

t−n

c(α)e−
δ
2
(t−r)(t− r)−α

∥∥∥ϕ(r)
∥∥∥

β
dr

≤ q(α)

[ ∫ n

n−1

e−q δ
2

ss−qαds

]1/q∥∥∥ϕ
∥∥∥

Sp
.

Using Eq. (3.3), we then deduce from Weirstrass Theorem that the series defined
by

D(t) :=

∞∑

n=1

Φn(t)

is uniformly convergent on R. Moreover, D ∈ C(R,Xα) and

∥∥∥D(t)
∥∥∥

α
≤

∞∑

n=1

∥∥∥Φn(t)
∥∥∥

α
≤ q(α)N(α, q, δ)

∥∥∥φ
∥∥∥

Sp

for all t ∈ R.
Let us show that Φn ∈ AA(Xα) for each n = 1, 2, 3, ... Indeed, since ϕ ∈

ASp(Xβ) ⊂ ASp(Xα), for every sequence of real numbers (τ ′n)n∈N there exist a
subsequence (τnk

)k∈N and a function ϕ̂ such that
∫ t+1

t

∥∥∥ϕ̂(s) − ϕ(s+ τnk
)
∥∥∥

p

α
ds→ 0
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and ∫ t+1

t

∥∥∥ϕ̂(s− τnk
) − ϕ(s)

∥∥∥
p

α
ds→ 0

as k → ∞ pointwise in R.
Define for all n = 1, 2, 3, ..., the sequence of integral operators

Φ̂n(t) =

∫ n

n−1

U(t, t− s)P (t− s)ϕ̂(t− s)ds

for all t ∈ R.
Now

Φ(t+ τnk
) − Φ̂(t) =

∫ n

n−1

U(t, t+ τnk
− s)P (t+ τnk

− s)ϕ(t+ τnk
− s)ds

−

∫ n

n−1

U(t, t− s)P (t− s)ϕ̂(t− s)ds

=

∫ n

n−1

U(t, t+ τnk
− s)P (t+ τnk

− s)ϕ(t+ τnk
− s)ds

+

∫ n

n−1

U(t, t+ τnk
− s)P (t+ τnk

− s)ϕ̂(t− s)ds

−

∫ n

n−1

U(t, t+ τnk
− s)P (t+ τnk

− s)ϕ̂(t− s)ds

−

∫ n

n−1

U(t, t− s)P (t− s)ϕ̂(t− s)ds

=

∫ n

n−1

U(t, t+ τnk
− s)P (t+ τnk

− s)
[
ϕ(t+ τnk

− s) − ϕ̂(t− s)
]
ds

+

∫ n

n−1

[
U(t, t+ τnk

− s)P (t+ τnk
− s) − U(t, t− s)P (t− s)

]
ϕ̂(t− s)ds.

Using Lebesgue Dominated Convergence Theorem, one can easily see that
∥∥∥
∫ n

n−1

U(t, t+τnk
−s)P (t+τnk

−s)
[
ϕ(t+τnk

−s)−ϕ̂(t−s)
]
ds
∥∥∥

α
→ 0 as k → ∞, t ∈ R.

Similarly, using [15] it follows that
∥∥∥
∫ n

n−1

[
U(t, t+τnk

−s)P (t+τnk
−s)−U(t, t−s)P (t−s)

]
ϕ̂(t−s)ds

∥∥∥
α
→ 0 as k → ∞, t ∈ R.

Thus

Φ̂n(t) = lim
k→∞

Φn(t+ τnk
), t ∈ R.

Similarly, one can easily see that

Φn(t) = lim
k→∞

Φ̂n(t− τnk
)

for all t ∈ R and n = 1, 2, 3, ... Therefore the sequence Φn ∈ AA(Xα) for each
n = 1, 2, ... and hence D ∈ AA(Xα). Consequently t 7→ S11(t) belong to AA(Xα).
The proof for t 7→ S12(t) is similar to that of t 7→ S11(t) and hence omitted.
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In view of the above, it follows that S1 ∈ AA(Xα). �

Lemma 3.3. The integral operator S1 defined above is a contraction whenever L
is small enough.

Proof. Let v, w ∈ AA(Xα). Now,

∥∥∥S11v(t) − S11w(t)
∥∥∥

α
≤

∫ t

−∞

c(α)(t − s)−αe−
δ
2
(t−s)

∥∥∥F1(s, v(s)) − F1(s, w(s))
∥∥∥ds

≤ c

∫ t

−∞

c(α)(t− s)−αe−
δ
2
(t−s)

∥∥∥F1(s, v(s)) − F1(s, w(s))
∥∥∥

β
ds

≤ Lcc(α)

∫ t

−∞

(t− s)−αe−
δ
2
(t−s)

∥∥∥v(s) − w(s)
∥∥∥ds

≤ Lc′cc(α)

∫ t

−∞

(t− s)−αe−
δ
2
(t−s)

∥∥∥v(s) − w(s)
∥∥∥

α
ds.

Similarly,

∥∥∥S12v(t) − S12w(t)
∥∥∥

α
≤

∫ ∞

t

m(α)e−δ(t−s)
∥∥∥F1(s, v(s)) − F1(s, w(s))

∥∥∥ds

≤ cm(α)

∫ ∞

t

e−δ(t−s)
∥∥∥F1(s, v(s)) − F1(s, w(s))

∥∥∥
β
ds

≤ Lcm(α)

∫ ∞

t

e−δ(t−s)
∥∥∥v(s) − w(s)

∥∥∥ds

≤ Lcc′m(α)

∫ ∞

t

e−δ(t−s)
∥∥∥v(s) − w(s)

∥∥∥
α
ds.

Consequently,
∥∥∥S1v − S1w

∥∥∥
∞,α

≤ Lcc′
(
c(α)Γ(1 − α)(2δ−1)1−α +m(α)δ−1

)∥∥∥v − w
∥∥∥
∞,α

and hence S1 is a contraction whenever L is small enough. �

Theorem 3.4. Suppose assumptions (H.1)-(H.2)-(H.3)-(H.4)-(H.5) and Eq. (3.3)
hold and that L is small enough, then the nonautonmous differential equation Eq.
(3.1) has a unique almost automorphic solution u satisfying u = S1u

Proof. The proof makes use of Lemma 3.2, Lemma 3.3, and the Bananch fixed-point
principle. �

4. Almost Automorphic Solutions to Some Higher-Order

Differential Equations

We have previously seen that each u ∈ H can be written in terms of the sequence

of orthogonal projections En as follows: u =

∞∑

l=1

γl∑

k=1

〈u, ek
l 〉e

k
l =

∞∑

l=1

Elu. Moreover,
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for each u ∈ D(A), Au =

∞∑

l=1

λl

γl∑

k=1

〈u, ek
l 〉e

k
l =

∞∑

l=1

λlElu. Therefore, for all z :=

( u1

.

un

)
∈ D = D(A(t)) = D(A) × H

n−1, we obtain the following

A(t)z =




0 IH 0 0 .... 0

0 0 IH .... 0

. . . IH . . .

. . . . . . .

. . . . . . .

. . . . . . .

−a0(t)A −a1(t)IH . . . . −an−1(t)IH







u1

u2

u3

.

.

.

.

.

un




=




u2

u3

.

.

.

.

.

−a0(t)Au1 − a1(t)u2...− an−1(t)un




=




∞∑

l=1

Elu2

∞∑

l=1

Elu3

.

.

.

−a0(t)

∞∑

l=1

λlElu0 −

n−1∑

k=1

ak(t)

∞∑

l=1

Eluk+1



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=

∞∑

l=1




0 1 0 0 .... 0

0 0 1 .... 0

. . . 1 . . .

. . . . . 1 .

. . . 1 . . .

. . . . . 1 .

. . . . . . .

−a0(t)λl −a1(t) . . . . −an−1(t)







El 0 0 0 .... 0

0 El 0 0 .... 0

0 0 El 0 .... 0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . El







u1

u2

u3

.

.

.

.

.

.

.

.

un




=

∞∑

l=1

Al(t)Plz,where

Pl :=




El 0 0 0 .... 0

0 El 0 0 .... 0

0 0 El 0 .... 0

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . El




, l ≥ 1,
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and

(4.1) Al(t) :=




0 1 0 0 .... 0

0 0 1 .... 0

. . . 1 . . .

. . . . . 1 .

. . . . . . .

−a0(t)λl −a1(t) . . . . −an−1(t)




, l ≥ 1.

From Eq. (1.3) it easily follows that there exists ω ∈
(π

2
, π
)

such that if we

define

Sω =

{
z ∈ C \ {0} :

∣∣∣ arg z
∣∣∣ ≤ ω

}
,

then

Sω ∪ {0} ⊂ ρ(A(t)).

On the other hand, one can show without difficulty thatAl(t) = K−1
l (t)Jl(t)Kl(t),

where Jl(t),Kl(t) are respectively given by

Jl(t) =




ρl
1(t) 0 0 0 .... 0

0 ρl
2(t) 0 0 .... 0

0 0 ρl
3(t) 0 .... 0

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . ρl
n(t)




, l ≥ 1

and
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Kl(t) =




1 1 1 1 .... 1

ρl
1 ρl

2 ρl
3 . .... (ρl

n)2

(ρl
1)

2 (ρl
2)

2 (ρl
3)

2 . .... (ρl
n)2

(ρl
1)

3 (ρl
2)

3 (ρl
3)

3 . . (ρl
n)3

. . . . . .

. . . . . .

. . . . . .

(ρl
1)

n−1 (ρl
2)

n−1 (ρl
3)

n−1 . . (ρl
n)n−1




.

For λ ∈ Sω and z ∈ X, one has

R(λ,A(t))z =

∞∑

l=1

(λ−Al(t))
−1Plz

=
∞∑

l=1

Kl(t)(λ − Jl(t)Pl)
−1K−1

l (t)Plz.

Hence,

∥∥∥R(λ,A(t))z
∥∥∥

2

≤

∞∑

l=1

∥∥∥Kl(t)Pl(λ− Jl(t)Pl)
−1K−1

l (t)Pl

∥∥∥
2

B(X)

∥∥∥Plz
∥∥∥

2

≤
∞∑

l=1

∥∥∥Kl(t)Pl

∥∥∥
2

B(X)

∥∥∥(λ− Jl(t)Pl)
−1
∥∥∥

2

B(X)

∥∥∥K−1
l (t)Pl

∥∥∥
2

B(X)

∥∥∥Plz
∥∥∥

2

.
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Moreover, for z :=




u1

u2

u3

.

.

.

.

.

un




∈ X, we obtain

∥∥∥Kl(t)Plz
∥∥∥

2

=
∥∥∥Elu1

∥∥∥
2

+

n∑

k=2

∣∣∣ρl
k(t)

∣∣∣
2(k−1)∥∥∥Eluk

∥∥∥
2

≤

(
1 +

n∑

k=2

∣∣∣ρl
k(t)

∣∣∣
2(k−1)

)∥∥∥z
∥∥∥

2

.

Let dl
n(t) :=

n∑

k=2

∣∣∣ρl
k(t)

∣∣∣
2(k−1)

> 0. Thus, there exists C1 > 0 such that

∥∥∥Kl(t)Plz
∥∥∥ ≤ C1d

l
n(t)

∥∥∥z
∥∥∥ for all l ≥ 1 and t ∈ R.

Using induction, one can compute K−1
l (t) and show that for z :=




u1

u2

u3

.

.

.

.

.

un




∈ X,

there is C2 > 0 such that

∥∥∥K−1
l (t)Plz

∥∥∥ ≤
C2

dl
n(t)

∥∥∥z
∥∥∥ for all l ≥ 1 and t ∈ R.
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Now, for z ∈ X, we have

∥∥∥(λ− JlPl)
−1z

∥∥∥
2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




1

λ− ρl
1

0 0 . 0

0
1

λ− ρl
2

0 0 . 0

0 0
1

λ− ρl
3

0 . 0

. . . . . .

0 0 0 .
1

λ− ρl
n







u1

u2

u3

.

.

.

un




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤
1

|λ− ρl
1|

2

∥∥∥u1

∥∥∥
2

+
1

|λ− ρl
2|

2

∥∥∥u2

∥∥∥
2

+ ...+
1

|λ− ρl
n|

2

∥∥∥un

∥∥∥
2

.

Let λ0 > 0. Define the function

η(λ) :=
1 +

∣∣∣λ
∣∣∣

∣∣∣λ− ρl
k

∣∣∣
.

It is clear that η is continuous and bounded on the closed set

Σ :=

{
λ ∈ C :

∣∣∣λ
∣∣∣ ≤ λ0,

∣∣∣ argλ
∣∣∣ ≤ ω

}
.

On the other hand, it is clear that η is bounded for
∣∣∣λ
∣∣∣ > λ0. Thus η is bounded

on Sω. If we take

N = sup





1 +
∣∣∣λ
∣∣∣

∣∣∣λ− ρl
k

∣∣∣
: λ ∈ Sω, l ≥ 1 ; k = 1, 2, ..., n, t ∈ R



 .

Therefore,
∥∥∥(λ− JlPl)

−1z
∥∥∥ ≤

N

1 +
∣∣∣λ
∣∣∣
‖z‖, λ ∈ Sω.

Consequently,
∥∥∥R(λ,A(t))

∥∥∥ ≤
K

1 +
∣∣∣λ
∣∣∣

for all λ ∈ Sω and t ∈ R.
First of all, note that the domain D = D(A(t)) is independent of t. Thus to

check that Eq. (2.2) is satisfied it is enough to check that Eq. (2.3) holds. For
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that, note that the operator A(t) is invertible with

A(t)−1 =




−
a1(t)

a0(t)
A−1 −

a2(t)

a0(t)
A−1 ... −

an−1(t)

a0(t)
A−1 −

1

a0(t)
A−1

IH 0 ... 0 0

0 IH ...0 0 0

. . . . . 0

. . . . . .

0 0 . . IH 0




for all t ∈ R. Hence, for t, s, r ∈ R, computing
(
A(t) −A(s)

)
A(r)−1 and assuming

that there exist Lk ≥ 0 (k = 0, 1, 2, ..., n− 1) and µ ∈ (0, 1] such that

∣∣∣ak(t) − ak(s)
∣∣∣ ≤ Lk

∣∣∣t− s
∣∣∣
µ

, k = 0, 1, 2, ..., n− 1(4.2)

it easily follows that there exists C > 0 such that

∥∥∥(A(t) −A(s))A(r)−1z
∥∥∥ ≤ C

∣∣∣t− s
∣∣∣
µ∥∥∥z

∥∥∥.

In summary, the family of operators
{
A(t)

}

t∈R

satisfy Acquistpace-Terreni con-

ditions. Consequently, there exists an evolution family U(t, s) associated with it.
Let us now check that U(t, s) has exponential dichotomy. For that, we will have to
check that (i)-(j) hold. First of all note that For every t ∈ R, the family of linear
operators A(t) generate an analytic semigroup (eτA(t))τ≥0 on X given by

eτA(t)z =
∞∑

l=1

Kl(t)
−1Ple

τJlPlKl(t)Plz, z ∈ X.

On the other hand, we have

∥∥∥eτA(t)z
∥∥∥ =

∞∑

l=1

∥∥∥Kl(t)
−1Pl

∥∥∥
B(X)

∥∥∥eτJlPl

∥∥∥
B(X)

∥∥∥Kl(t)Pl

∥∥∥
B(X)

∥∥∥Plz
∥∥∥,
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with for each z =




u1

u2

u3

.

un


 ,

∥∥∥eτJlPlz
∥∥∥

2

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥




eρl
1
τEl 0 0 0 0 ... 0

0 eρl
2
τEl 0 0 0 ... 0

. . . . . . .

. . . . . . .

0 0 ... 0 0 0 eλl
nτEl







u1

u2

u3

.

un




∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

≤
∥∥∥eρl

1
τElu1

∥∥∥
2

+
∥∥∥eρl

2
τElu2

∥∥∥
2

+ ....+
∥∥∥eρl

nτElun

∥∥∥
2

≤ e−2δ0τ
∥∥∥z
∥∥∥

2

.

Therefore

(4.3)
∥∥∥eτA(t)

∥∥∥ ≤ Ce−δ0τ , τ ≥ 0.

Using the continuity of ak (k = 0, ..., n− 1) and the equality

R(λ,A(t)) −R(λ,A(s)) = R(λ,A(t))(A(t) −A(s))R(λ,A(s)),

it follows that the mapping J ∋ t 7→ R(λ,A(t)) is strongly continuous for λ ∈
Sω where J ⊂ R is an arbitrary compact interval. Therefore, A(t) satisfies the
assumptions of [40, Corollary 2.3], and thus the evolution family (U(t, s))t≥s is
exponentially stable.

It is clear that (H.2) holds. It remains to check assumption (H.4). For that
we need to show that A−1(·) ∈ AA(B(X)). Since t 7→ ak(t) (k = 0, 1, 2, ..., n− 1),

and t 7→ a0(t)
−1 are almost automorphic it follows that t 7→ dk(t) = −

ak(t)

a0(t)
(k = 1, 2, ..., n−1) is almost automorphic, too. Therefore, for every sequence of real
numbers (s′n)n∈N, there exists a subsequence (sn)n∈N such that form = 0, 1, ..., n−1,

ã−1
0 (t) := lim

n→∞
a−1
0 (t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

ã−1
0 (t− sn) = a−1

0 (t)

for each t ∈ R, and

d̃m(t) := lim
n→∞

dm(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

d̃m(t− sn) = dm(t)

for each t ∈ R.
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Setting

Ã(t) =




d̃1(t)A
−1 d̃2(t)A

−1 d̃3(t)A
−1 ... d̃n−1(t)A

−1 −
1

ã0(t)
A−1

IH 0 0 ... 0 0

0 IH 0 0 0 0

. . . . . 0

. . . . . .

0 0 . . IH 0




for each t ∈ R, one can easily see that, for the topology of B(X), the following hold

Ã(t) := lim
n→∞

A−1(t+ sn)

is well defined for each t ∈ R, and

lim
n→∞

Ã(t− sn) = A−1(t)

for each t ∈ R, and hence t 7→ A−1(t) is almost automorphic with respect to
operator-topology.

It is now clear that if f satisfies (H.5) and if L is small enough, then the higher-
order differential equation Eq. (1.4) has an almost automorphic solution




u1

u2

u3

.

un


 ∈ Xα = Hα × H

n−1.

Therefore, If f = f1 + f2 satisfies (H.5) and if the Lipschitz constant of f1 is small
enough, then Eq. (1.2) has at least one almost automorphic solution u ∈ Hα.

5. Examples of Second-Order Boundary Value Problems

In this section, we provide with a few illustrative examples. Precisely, we study
the existence of almost automorphic solutions to modified versions of the so-called
(nonautonomous) Sine-Gordon equations (see [26]).

In this section, we take n = 2 and suppose a0 and a1, in addition of being almost

automorphic, satisfy the other previous assumptions. Moreover, we let α =
1

2
and

fix β ∈
(1

2
, 1
)
.
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5.1. Nonautonomous Sine-Gordon Equations. Let L > 0 and and let J =
(0, L). Let H = L2(J) be equipped with its natural topology. Our main objective
here is to study the existence of almost automorphic solutions to a slightly modified
version of the so-called Sine-Gordon equation with Dirichlet boundary conditions,
which had been studied in the literature especially by Leiva [26] in the following
form

∂2u

∂t2
+ c

∂u

∂t
− d

∂2u

∂x2
+ k sinu = p(t, x), t ∈ R, x ∈ J(5.1)

u(t, 0) = u(t, L) = 0, t ∈ R(5.2)

where c, d, k are positive constants, p : R × J 7→ R is continuous and bounded.
Precisely, we are interested in the following system of second-order partial dif-

ferential equations

∂2u

∂t2
+ a1(t, x)

∂u

∂t
− a0(t, x)

∂2u

∂x2
= Q(t, x, u), t ∈ R, x ∈ J(5.3)

u(t, 0) = u(t, L) = 0, t ∈ R(5.4)

where a1, a0 : R × J 7→ R are almost automorphic positive functions and Q :
R × J × L2(J) 7→ L2(J) is Sp-almost automorphic for p > 1.

Let us take

Av = −v′′ for all v ∈ D(A) = H
1
0(J) ∩ H

2(J)

and suppose that Q : R × J × L2(J) 7→ H
β
0 (J) is Sp-almost automorphic in t ∈ R

uniformly in x ∈ J and u ∈ L2(J) Moreover, Q is Lipschitz in the following sense:
there exists L′′ > 0 for which∥∥∥Q(t, x, u) −Q(t, x, v)

∥∥∥
H

β
0
(J)

≤ L′′
∥∥∥u− v

∥∥∥
2

for all u, v ∈ L2(J), x ∈ J and t ∈ R.
Consequently, the system Eq. (5.3) - Eq. (5.4) has unique solution u ∈ AA(H1

0(J))
when K ′′ is small enough.

5.2. A Slightly Modified Version of the Nonautonomous Sine-Gordon

Equations. Let Ω ⊂ RN (N ≥ 1) be a open bounded subset with C2 boundary Γ =
∂Ω and let H = L2(Ω) equipped with its natural topology ‖ · ‖L2(Ω). Here, we are
interested in a slightly modified version of the nonautonomous Sine-Gordon studied
in the previous example, that is, the system of second-order partial differential
equations given by

∂2u

∂t2
+ a1(t, x)

∂u

∂t
− a0(t, x)∆u = R(t, x, u), t ∈ R, x ∈ Ω(5.5)

u(t, x) = 0, t ∈ R, x ∈ ∂Ω(5.6)

where a1, a0 : R × Ω 7→ R are almost automorphic positive functions, and R :
R × Ω × L2(Ω) 7→ L2(Ω) is Sp-almost automorphic for p > 1.

EJQTDE, 2010 No. 22, p. 23



Define the linear operator A as follows:

Au = −∆u for all u ∈ D(A) = H
1
0(Ω) ∩ H

2(Ω).

For each µ ∈ (0, 1), we take Hµ = D((−∆)µ) = H
µ
0 (Ω) ∩ H2µ(Ω) equipped with its

µ-norm ‖ · ‖µ.

Suppose that R : R × Ω × L2(Ω) 7→ H
β
0 (Ω) is Sp-almost automorphic in t ∈ R

uniformly in x ∈ Ω and u ∈ L2(Ω). Moreover, R is Lipschitz in the following sense:
there exists L′′′ > 0 for which∥∥∥R(t, x, u) −R(t, x, v)

∥∥∥
β
≤ L′′′

∥∥∥u− v
∥∥∥

2

for all u, v ∈ L2(Ω), x ∈ Ω and t ∈ R.
Therefore, the system Eq. (5.5) - Eq. (5.6) has a unique solution u ∈ AA(H1

0(Ω))
when L′′′ is small enough.
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